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Introduction and Motivation:

‘We have been studying [6], [7] an integer-only arithmetic called the Residue Number System.
The consequences of RNS being an integer-only arithmetic include the inability to do division,
and square-root operations. The applications that are very amenable to integer-only arithmetic,
are the basic signal processing functions that are multiply-accumulate intensive, such as FIR
(Finite Impulse Response) digital filters, convolution, correlation, FFTs (Fast Fourier Transforms).
These operations have no feedback and hence the required dynamic range is finite, and can easily
be predicted for worst case growth. The processor required to perform these functions must be
able to handle the worst case growth. If it is expected that the computed results will exceed the
‘processors dynamic range (either before processing starts or continually checked during
processing), scaling will be required so that overflow will be avoided. Overflow will result in

unrecoverable errors in the output yielding meaningless solutions.

In past research, we have found, through simulation and analysis, that the Residue Number
System arithmetic can provide up to 8 times speed improvement over a state-of-the-art DSP
(digital signal processor), based on the conventional binary integer arithmetic, at the same clock
speed. This improvement is based on multiply-accumulate-only operations. No division is
considered. If division is part of the algorithm, the improvement is less, due to the overhead of
RNS-to-Binary conversion. For comparison purposes, it was assumed that the non-RNS
operations were performed on the same processor as the binary processor under comparison, so

the degradation is mostly due to the RNS-to-Binary conversion overhead.
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Scaling operations must be handled very carefully. There are a few general issues that must be
examined. First, does the problem allow scaling, and must the scale factor be saved, to recover
the true solution, or can the scale factor be ignored. For example, in the adaptive beamforming
problem, Rw = s, the weight vector may be scaled by any real number since it is only the
relarive magnitudes of the weights that are of importance. In this example, the scale factor does
not need to be saved. The problem though, is that too much scaling will reduce the precision of

the solution, resulting in degraded overall signal-to-noise ratio.

Another issue is defining the difference between the scale operation and division, and the choice
of the scale factor to be used. We define scaling as dividing by an arbitrary number, to decrease
the required dynamic range to store the result. We use the term division, when the divisor is not
arbitrary, but is a required for a particular algorithm. For example, in linear algebra, there are
algorithms that require a normalized vector v/|v|. This division by the norm of the vector is used,
for example, in producing sets of orthonormal vectors. If the division were replaced by an
arbitrary scale factor, the algorithm may not necessarily produce onhogonal vectors, which may

exacerbate any ill-conditioning problems.

In terms of speed, the scaling operation is more desirable than the division operation. For
instance, in a binary computer, scaling (division by 2") is done by shifting the bits of a word to
the right, n times - a simple operation in binary. Division by a specific number requires many
more operations, including shifts and subtracts. In the residue number system, division requires
conversion of the RNS representation back to binary using the Chinese Remainder Theorem,
CRT. (See [11], for example.) The quotient is then rounded to an integer and converted back to
the RNS. The RNS-to-Binary conversion is a very time consuming process though Binary-to-RNS
conversion is more straightforward. On the other hand, like binary, scaling is a little simpler in
RNS. There are a variety of methods. One method can scale the number by one or more of the
moduli in the residue number system. Another method based on the CRT, called the L-CRT,
developed by researchers at the University of Florida [4]. The L-CRT scales the RNS number

by a fixed, known constant, and avoids a full RNS-to-Binary conversion.

Other researchers, including Westinghouse, have indicated that one of the biggest problems with
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* implementing Gauss Elimination in RNS, is the dynamic range issue and implementing scaling
to overcome it. The mathematical details, including accuracy tradeoffs, were never presented. We

will specifically address this issue.

The following analysis is to be used as background for the ultimate questions of whether we can
use an RNS processor successfully for adaptive beamforming, ABF, applications, what constraints
are required for the processor, and guidelines to design a processor for adaptive beamforming.
We will study, in detail, the dynamic range requirements, for the Gauss Elimination algorithm,
which can be used for adaptive beamforming. We chose to study Gauss Elimination because of
its simplicity in implementation. Though there are other more robust algorithms that should be
studied later, we observe that for the covariance matrix formulation of the ABF problem, the
matrix is positive definite Hermitian so that there is no significant theoretical advantage to other
methods. The QR algorithm for the least squares formulation of the problem is numerically stable
but in its basic form requires substantial use of non-RNS operations such as square-roots. This
approach has been studied in terms of architecture and some precision analysis by Ward,

Hargrave and McWhirter [12].

For completeness it is desirable to say a little here about the adaptive beamforming problem. A
typical beamforming situation is shown in Figure 2. An array of N antenna elements are sampled

at time k to form a complex snapshot vector x,. A collection of K of these snapshots constitute

the NxK (N<K) data matrix X. Inner products between the data vector x, and complex weights w

form the complex scalar outputs y,. For the time from 1 to K, the output vector y = w HX . The
problem is to determine the weights w,, w,, ...,wy., that will optimize the response y in some
sense. When it is necessary to continually adjust the'werights, we say that we are doing adaprive
bearnforming.
Thus we have

xo1)

x (1)

Input = x(1) =

Xy (1)
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The situation is illustrated in Figure 1 below.

FIGURE 1

Signal Sourcc\) X/ E(S:Omszlaixa: ciehts
)

Array

We can derive the optimal weights to minimize the mean-square error, MSE = E[€?], where the

error signal, € is the difference between the desired response and the output .

cd -y =g -wh
€=~y = d, WX,

2 _ g2 H H. H
€= dp -2dwW7x  +w7x x(w

Taking expected values of both sides yields

s 2w HTTT L wHe o P
= dp - 2WUX A WUX X W

PJI

-

E[€?] = €

or
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Ele] = d?-2w* +wiR w

To minimize this function, we set the gradient with respect to the weight vector equal to zero,
that is,
= -2r,;+2Rw=0 = Rw-=r1_,
An approxnnatlon Rto the correlation matrix R, (also called the covariance matrix for zero-mean
data [8]) is formed from the NxK data matrix X. R,, is the complex NxN matrix R, = E[XX*]
which is an infinite time average. Since we only have a finite number K of snapshots, we use the
estimated covariance matrix
R = XX#IK

The covariance matrix is always non-singular, and hence R is a positive definite Hermitian
matrix, since statistically independent noise exists on the antenna elements. The noise correlation .
matrix is just R, = 0], where o? is the noise variance (power), and / is the identity matrix of size
.N. That is, the cross-correlation terms average out while the autocorrelation terms average to the
variance of the noise. The data covariance matrix is made from the sum of the signal, jammer

and noise covariance matrices: R = R + R; + R,

The weight vector is found by solving the system Rw = s where either
(@) s could be the steering vector given by

= (l,eR, 28, e N7
where ¢ = (2md/A)sinf and 6 is the desired look-angle with respect to the normal to the linear
antenna array; d is the inter-element spacing and A is the wavelength of the incoming signal at
the carrier frequency, or
(b) s could be the cross-correlation vector

r,, = Elx,d;]1 = (Xd®/K

where d, is the reference signal sampled at time k, x, = (xo,xl,...,xN_])T is the snapshot vector

at time &, and, as before, E[¢] is the expectation operator.

Algorithms which have been used for solving this covariance matrix form of the problem include

Gauss elimination, Cholesky decomposition, and the recursive least-squares (RLS) method based
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on the matrix inverse lemma [5], p.385].

Parameters
Principal parameters of the problem and the notation we shall use for them are
N = # array elements
K = # "snapshots
q,. = # bits accuracy required for weight vector
gy = # bits accuracy in data matrix, or “quantization” (also gives numerical range of data
matrix entries)
k = condition number of covariance matrix
1+L; = wordlength (in bits) for storage - equivalent to specifying dynamic range

L, = accumulator wordlength.

The basic steps tb analyse are:

1 Formation of the covariance matrix

2 Forward elimination

3. Back substitution

4 Sensitivity of the solution to g,

The analysis must consider both range and precision. Both of these will show some dependence

on the eigenvalue structure and conditioning of the covariance matrix.

1. Formation of the covariance matrix and cross-correlation vector

Each element of the covariance matrix is obtained as the inner product of two complex K-vectors

with components in the interval [—2"", 2‘“’] so that the real and imaginary components of each

By
pa

complex product are in the range [-2(2”}2, 2(2%) ] = [-22‘”‘1, 2% which in turn implies that
real and imaginary parts of the elements of the scaled’ covariance matrix lie in the interval
(K27, =227,

If the full integer (scaled) covariance matrix is to be stored then it follows that

! . - L R
Note that the term “scaled” means “scaled up” throughout. The scaling results {rom the omission of the division by X.
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L2 1+2g,+logK 1
Here and throughout log is used for the base-2 logarithm lbgz. Of course there will be much
greater growth in the dynamic range (and so in the required value of L;) during subsequent
stages.
If, on the other hand, the actual covariance matrix is to be formed there is a division of these
inner products by K so that the range is reduced by this factor and (1) is replaced by the
requirement _ |

Loz 1+2g, @
Note that in the case where K is a power of 2, K = 2”, this particular division is equivalent to
using the final p bits of the accumulated sums for rounding of the L-bit words. In this case there
is an error in the representation which for a sufficiently large accumulator can therefore be kept
to a single roundoff in the final division. Specifically, if

L, =2 1+2gy+log K 3)
then the absolute errors in the real and imaginary parts of the elements of the covaﬁance matrix
R are bounded by 1/2.
We recall here some of the basic definitions of the matrix and vector norms which we are using
in this discussion. Although the dynamic range is directly related to the magnitudes .of the real
and imaginary paﬁs of the various complex quantities the analysis is simplified by using the

‘magnitudes of the complex numbers themselves:

2| = |x+gy] = VxP+y? = Y2z @
For a complex vector z = (z,,2,, ., z,,)T the maximum or «nomm is defined by

Izl = mgx]z,-! &)
and then the associated matrix norm is defined as usual by

l4l. = max{|Az], : |zl, < 1) (©)
which is given by the maximum (absolute) row sum of the matrix A:

Il = maxy" |z )

7 j

It follows now that the absolute errors in the elements of the computed covariance matrix R are

bounded by 1/y/2; that is, the -norm error bound for R is
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18RI, < NJV2 | (8)
Here we have used 6R to denote the error in the matrix R; corresponding notation will be used

for other errors subsequently.

The two cases - scaled and unscaled - must both be pursued for their effects on dynamic range
and accuracy requirements. The bound (8) can be used to obtain error estimates for the solution
obtained by Gauss elimination. '

The formation of the cross-correlation vector y for the right-hand side is similar, with components
consisting of inner products between the snapshot vectors comprising the data matrix and some
desired response d. If we assume the same quantization for d as for the data matrix, then (1) and
(3) summarize the options for the wordlength in just the same way as above. In the absence of
scaling, the division by K again introduces an error which (using the same analysis as above)

satisfies

18yl < 12 ®)
Example For the special case N = 4, K = 16, the inequality (1) becomes L; > 5+2g, for the

scaled matrix. Without the scaling L, > 5+2g,, and L; > 1+2g,, the error bound (8) is

18R], <22.

The error bounds (8) and (9) can be used to obtain bounds on the error in the solution of the
resulting (unscaled) linear system making use of condition number estimates whjch can be
obtained from signal strengths [1]. The next short section summarizes this work on the

eigenvalues of the covariance matrix.
2. The eigenvalue spread for the covariance matrix of adaptive beamforming

Compton ([1] Section 4.6, pp258-275) studies the eigenvalues and therefore the condition number
of the covariance matrix. His overall findings can be summarized as follows:
The eigenvalues of the covariance matrix (normalized relative to the background noise level) are

all greater than or equal to unity so that
A= 1 (10)

min T

The only non-unit eigenvalues are directly related to the powers of the various signals - both the
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* desired and interference signals. In the case of a single jammer of significantly greater power
than the desired signal, the two largest eigenvalues are (approximately) proportional to the
number of antennas and the powers of the jammer and of the desired signal respectively.
It follows that the condition number is well-approximated by N times the most powerful signal’s
(the jammer’s) SNR. That is, with the same normalization as above:

Apax = NxSNR; (11
It follows that

x = NxSNR, : (12)
which for a jammer of 40dB with N = 4 antennas means that x = 4x10°.

In the conventional error analysis for Gaussian elimination of Wilkinson [14] this condition
number is essentially the scale factor by which errors are magnified during the solution. However
the more recent analysis of Demmel [2] and others using a relative «-norm suggests that the
norm of the inverse matrix may be a better condition number; ahd, in this case, that is close to
unity. .

The relative merits of these two analyses for the adaptive beamforming problem should be

investigated further.

Monzingo and Miller [8] consider the effect of the eigenvalue spread on the accuracy of the
solution obtained from the covariance matrix solution. In particular, their experimental analysis
shows that with an eigenvalue spread of around 40 dB and using a mere 10 bit wordlength there
was a degradation in the solution of no more than 2 dB which corresponds to only one or two
significant bits rather than the four significant decimal figures which might be expected from the
large condition number. :

The other relevant aspect of their work to the present discussion centers around the question of
the number of snapshots which are necessary in order to achieve acceptable accuracy in the
solution. Their conclusion was that, for a 3 dB loss, K = 2N was sufficient. It is anticipated that

this figure is too small for many scenarios and therefore results here are presented for three cases:

NIK = 2,3, 4.
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3. Forward elimination

In this section we are.primarily interested in the dynamic range requirements of the forward

elimination phase of our solution process. We shall consider the solution of a linear system
Ax =b (13)

and denote the elements of the positive definite Hermitian matrix A by a;; and the components

of the right-hand-side vector by b, The basic algorithm for the forward elimination phase of

Gauss elimination can then be written in the ijk-form as:

Forward elimination algorithm

fori=1to N-1
forj=i+ltoN
m:.=a;/ a;
a;:=0
b] = bj - mb,

fork=i+l1toN

ajk = ajk - 'na,'k

Again there are two cases to consider depending on whether the covariance matrix is or is not

scaled.

3.1 The scaled covariance matrix

We assume here that (1) is satisfied and so the scaled (that is, no division by K) form of the
covariance matrix can be used. Consider first the dynamic range growth which is implicit in the
Gauss elimination phase of the solution. Since the covariance matrix is known to be positive

definite Hemu'tilan, no pivoting is used. (See [14], for example, for justification of this.)

At each step of the innermost loop of the process, a complex 2x2 matrix is being reduced as
follows:

a b ia b (14)
c d 0 d-bga

The most immediate question is whether the division can be incorporated into the algorithm in

a meaningful way. Now for our positive definite Hermitian matrix, the diagonal elements are all
real and remain real throughout the elimination phase. Therefore the divisor a in (14) is always

real and, for our problem and solution, must be a real integer.

The standard implementation of Gauss elimination as in the above algorithm would compute the
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appropriate multiplier for the current row and then to use this multiplier for all the relevant
matrix entries. In the integer arithmetic situation this is not possible since the multiplier would
need to be rounded to a (complex) integer and this would always round to zero if the off-
diagonal entry was smaller than the pivot. Since the largest element of the matrix necessarily lies
on the diagonal [3], [13] this rounding of the multiplier to zero must occur at some point in the
elimination phase.
The preferred alternative is therefore to compute bxc first in a full length accumulator and then
to perform the rounded division by a. This places a constraint on the accumulator size in order
to accommodate the full components of each complex multiplication:

L, =2L,+1 1s)
The division by a of course reduces the range of this product. Wilkinson’s analysis [14] of
Gaussian elimination shows that for a positive definite matrix the growth factor is 1 and therefore
that the true value of d-bc/a in (14) is bounded by the largest element of the original matrix. The
“growth factor” referred to here is the estimate of the ratio of the magnitudes of the largest
elements in the original matrix and the final upper triangular matrix at the end of the elimination
phase. |
Now the division can be performed so as to give an integer result which has an error no greater |
than 1/2 and provided the positive definiteness is not lost during the elimination phase the only
element growth that can occur results from these rounding errors so that

M ’
j e

+(N-1DJ2 (16)

where the ai}(.k) are the elements of the matrix at the k™ stage of the elimination and |+|. denotes

max ]a,;M{w < max |2

the magnitude of the largest component of its complex argument. That is

| z|, = max{|Re(2)], |Im(2)]} a7
Note further that since the largest element of A is necessarily positive and lies on the diagonal
max |z}’ |, = max a;’ (18)

It follows that at most one additional bit is needed in Ls to accommodate this growth since in all

practical cases we certainly have N/2 < K 2% (In reality it is highly unlikely that this extra bit

is ever needed for this growth.)
The effect of these errors on the solution must of course be analysed, too. A larger dynamic

range would allow fewer division or scaling operations and so could result in reduced error
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bounds.
The wordlength requirements in (19) for the left-hand side matrix during the forward elimination
stage follow from (1), the additional bit to allow for growth, and (15):

Le= 2+2g,+logk, L,z 2L,+1 19)
The growth on the right-hand side is a more serious problem since there is no correspondingly
simple bound on the growth factor.
However, we can obtain bounds for the growth of the right-hand side as follows. Corresponding
to (14), each stage of the elimination results in modifications of the right-hand side of the form:

a;
b, < b - bl.—i (20)

Now the magnitude of the multiplier here is bounded by the largest matrix element, M,, say,

since the largest element is on the diagonal, so that |a,| < M -1 fori # j, while the diagonal
elements are positive integers and so a; = 1. Of course, as with the elimination on the left-hand

side, the multiplier here would not be computed but rather the multiplication would be performed
first and the division would follow.
Denote by M the range available for the initial (scaled) covariance matrix and cross-corelation
vector given by the initial Jower bound for Ly in (1). That is |

|a;] < M= Kx2"! (21)
It follows that the growth factor for the right-hand side at each stage is bounded by M so that
the real and imaginary parts of the final entry are bounded by M" which is to say the dynamic
range growth is linear in the wordlength. This compares with the faster-than-geometric growth
established for the divisionless algorithm in [7].
It follows that any wordlength satisfying

Lg= N(1+2g,+logk)+1 (22)
will certainly suffice. (The additional 1 is again to allow for the very unlikely overspill resulting
from the accumulated roundoff error in the divisions.) Such a wordlength will also suffice for
the accumulator for the elimination phase since the final multiplication fits into this wordlength,
too. The critical dependencies here are clearly on N and g,. The wordlengths given by (22) are.
summarized for various cases in Table 1 below. Any technology has a maximum practical integer
arithmetic wordlength and this places a restriction on the size of tpe adaptive beamforming

problem which can be solved in this way without some further scaling to restrict the dynamic
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range.
TABLE 1
Wordlengths in bits given by (22)
K=2N K=3N K = 4N
g | N=4 | 8 16 4 8 16 4 8 16
4 | 49 105 225 52 110 235 53 113 241
8 || 81 160 | 353 | 84 174 ! 363 | 8 177 | 369
______ r---___J r___---J
16| 145 | 297 609 | 148 | 302 619 | 149 | 305 625

The broken line indicates the boundary of what can be achie\}ed with a 256 bit integer
wordlength.

It is apparent that increasing the ratio K/N is cheap while increasing either the number of
antennas or the quantization is considerably more expensive with the increase in the number of
antennas carrying the highest cost in terms of desired wordlength for the elimination phase.
This analysis of dynamic range assumes nothing about the magnitudes of the components of the
solution. Any knowledge of the range of these components would lead to much improved

dynamic range estimates. This will be considered further in Section 3.3 after we have

- summarized the corresponding analysis to this for the unscaled case.

3.2 The unscaled case

In the case where the covariance matrix and cross-correlation vectors are not scaled, the initial
requirements for the wordlengths are given by (2) and (3). The resulting dynamic range
corresponding to (21) will be denoted by

|a

il = M= 21 23)
The matrix elements again have a growth factor of 1 and so roundoff effects simply demand one

extra bit. The growth analysis for the right-hand side is precisely analogous to that of the
previous section and leads to the bound (M /)" from which we can deduce that choosing

_ L,Ls =2 N(1-+2g)+1 24)
will suffice. Table 2 shows the wordlengths given by (24) for the same range of values of N, K

and g, as was used previously. However, in this case there is, of course, no dependence on K.
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TABLE 2
Wordlengths in bits given by (24)
gy N=4 8 16
4 37 73 145
PR
8 69 137 i 273
[em——————— .
16 133 ! 265 529
1

Again we see that the wordlengths grow rapidly with both N and g,, severely limiting the size

of problem that can be handled with even a fairly large wordlength integer arithmetic.

To motivate the discussion in the next section, consider the effect of knowing a bound on the
weights. If the magnitudes of the weights are known to satisfy some bound of the form

iwl, < W | (25)
then the elements of the right-hand side satisfy

|6, <= WM’ (26)
throughout the elimination phase. A similar conclusion holds for the scaled matrix with M in

place of M’. We recall here that the 1-norm ||, is defined by
Izl = 2 |z,| - 27

These bounds suggest that much shorter wordlengths may be useable. Information on the size of
the right-hand side vector is therefore likely to prove valuable in reducing the computation

wordlength requirements for the adaptive beamforming problem.

3.3 "Backward” range analysis

The intention is to compute the weights to an accuracy of g, bits. These weights are to-be
represented by the complex integer solution of the linear system. We shall suppose that the
calculation of the weights is performed using a wordlength 1+L,: that is, to an accuracy of L,
bits together with the sign. Typically, we expect that L, > g, to allow for some loss of precision
in the solution due to the various roundoff and data errors. L, therefore represents the appropriate

computation wordlength from which weights accurate to g, bits will be extracted.
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Nitzberg [9] studies the precision in the weights that is required in order to achieve a 1 dB or
3 dB degradation as a function of the number N of antennas and the power of the jammer signal.

His findings are that g,. depends linearly on the logarithms of both N and SNR,;.

TABLE 3
Weight quantization, g,,, for a 3dB degradafion as a function of N and SNR; from [9]
N 20dB 30dB 40 dB 50 dB
4 6 9 13 16
8 | 7 10 14 17
16 8 11 15 18

We summarize some of Nitzberg's findings in Table 3. For a 1 dB degradation each of these
quantization wordlengths should be increased by 1 bit. For example, with N = 8 and a 40 dB
jammer signal we require 14 bits accuracy in the weights for a 3 dB degradation while 15 bifs
would be needed for 1 dB. Our present task is to determine from this requirement the appropriaie
L, and g, which will yield this accuracy in the final solution.

In 1980, Nitzberg [10] extended his study to the question of how many bits are nee‘de'd for the
matrix inversion and found a similar linear relation. This work took no account of the formation
of the sample covariance matrix or the quantization of the data. To some extent then, the present

work is a continuation of Nitzberg's work.

What is the significance of this for our dynamic range analysis? Once L, is detérmined, we have
a bound on the magnitudes of the weights and therefore can obtain the savings in necessary
wordlength anticipated at the end of the previous section. The specific relation between L, and
g,, will depend on the error analysis which follows.
Denote the bound on the weights corresponding to the wordlength L, by M, so that

lw,| < M, - JI2kv = ghw 28)
From the eigenvalue analysis referred to in Section 2, it follows, using (10) that

Iwl. =< 15, ' 29)

where b is the unscaled right-hand side vector. Hence using the wordlength given by (2) for the
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unscaled matrix it follows that wordlengths satisfying

L,z 2g,+1/2 (30)
will suffice. Now using the bound (28) it follows that
Iwll, = NM, 31

and then using (26) or its equivalent for the scaled matrix, it follows that the modified right-hand
side elements generated throughout the solution satisfy
|b;] < NM M or | 5| < NM M (32)
With the wordlengths given by (19) for the scaled matrix this yields the wordlength estimate
L¢= 4g,+logN+1logK+5/2 33)
for the dynamic range of the right-hand side. The corresponding accumulator wordlength need
not be sufficient to accommodate a full multiplication of words of this length since the only long
multiplies that are needed are between elements of the matrix and the right-hand side vector. It
follows that
| L, 2 6g,+logN+2logK+4 (34)
will suffice.

The only change needed for the unscaled case is that the terms in log K are not needed:

Le= 4g,+logN+5/2 (35)
L;=6gy+logN+4

To illustrate the savings available relative to the earlier tables, we show in Table 4 the resulting
wordlengths for the various jammer strengths used in Table 3, with the same combinations of N
and K as were used for Tables 1 and 2, with gy and L, = 1.5 g, satisfying (30) and the weight
quantizations of Table 3 for a 3 dB degradation.

The linear dependence on g,, (and hence L, and g,) and log N observed by Nitzberg is apparent
in these tables. The magnitude of the savings which are obtained from knowing bounds on the
weights is also apparent since all of these cases can easily be accommodated by a 128-bit
accumulator whereas many of them needed too large a dynamic range for 256 bits in Tables 1

and 2.
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TABLE 4
Wordlengths gy, Ls, L, given by (30), (33) - (35) with L, = 1.5q,, taken from Table 3
@  SNR, = 20 dB

K=2N K=4aN Unscaled
N 4 8 16 4 8 16 4 8 16
9x 4 5 ) 6 4 5 6 4 5 6
L 24 30 36 25 31 37 21 26 31
L, 36 45 54 38 47 56 30 37 44

®) SNR, = 30 dB

K=2N K= 4N Unscaled
N 4 8 16 4 8 16 4 8 16
o 7 .8 9 7 8 -9 7 8 9
L 36 42 48 37 43 49 33 38 43
L, 54 63 72 56 65 74 48 55 62

©)  SNR, = 40 dB

K =2N K= 4N : Unscaled
N 4 8 16 4 8 16 4 8 16
Gx ‘ 10 11 12 10 11 12 10 1 12
L 48 54 60 49 55 61 45 50 55
L, 72 81 90 74 83 92 66 73 80

@  SNR, = 50 dB

K=2N K=4aN Unscaled
N 4 8 16 4 8 16 4 8 16
ax 12 13 14 12 13 14 12 13 14
L 56 62 68 57 63 69 53 58 63
L, 84 93 102 86 95 104 78 85 92

Clearly the error analysis will be important in determining the dependence of L, on the desired

accuracy g, which will in turn dictate the actual wordlengths that are needed.
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4. Back substitution

To determine the dynamic range requirements for the back substitution phase of the solution, we

can consider the two cases (the scaled and unscaled covariance matrix) together since the rest of

the analysis is similar for both. At this stage we are interested in the solution of a system
Uw=05b ’ 36)

where U is an upper triangular matrix.

Using the notation of the previous section, we have the following bounds for the elements of this

system:
elements of scaled unscaled
U M M
b NM .M NM M’
w : M, M,

In fact, for the individual components of the right-hand side vector b, we can obtain the tighter
bounds: '

[b;] < (N+1-DM (Mor M) 37
for the same two cases.
The bounds for the final weights clearly can be accommodated in the same wordlengths that were
used for the forward elimination phase. The only point of concern is therefore the accumulation
of the (modified) right-hand side prior to each division in the standard loop:

Back substitution aleorithm

Wy = by [ Uy

fori=N-1downtol

N
bi- 3 uywy

‘J=i-}

u/l, =

/ Uii

Note again that each division operation has a real divisor so that complex division is avoided.

To see that the same accumulator that was required for the elimination suffices for this stage of
the solution, we must consider the right-hand side of the above loop operation.

Temporarily, we denote by B the quantity M, M or M, M’ whichever is appropriate to the scaling -
being used. Since the final value of each w; is bounded by M, it follows that the final

accumulated value before the division is bounded by B. Its component parts, using (37), satisfy
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N
Y uwl < (N-DB (38)

Jei-1

|b,| < (N+1-1)B,

from which it follows that no partial result can exceed (N+1-i)B and therefore that the
accumulator lengths derived in the previous section suffice. Furthermore, with such an

accumulator, the only error committed is the rounding in storing the result of the final division.

The wordlengths of Table 4 are suitable for the complete solution process for Gauss elimination
using integer arithmetic with divisions in such a way that correct integer results are accumulated
throughout the process with correctly rounded integer results for division. The purpose of the
analysis which follows is to analyse this particular form of Gauss elimination to determine the
data quantization and arithmetic capability which are required in order to deliver a specified
accuracy in the final weights. In the next section we consider the error analysis aspects of this

question but, first, we complete the analysis of the dynamic range requirements.

Subsequently, we will address similar questions for the situation where some scaling is necessary
in order to restrict the dynamic range to keep the accumulator size below some threshold value.
For example, speed considerations may dictate that arithmetic wordlengths are kept below 32 or
64 bits.

There is, in fact, an even smaller bound available for the right-hand side than that given by (38).
This derives from the fact that the first equation remains unchanged during the elimination so that
b, is bounded by the original M or M'. Similarly the second element cannot undergb the full
growth anticipated here and can only achieve a magnitude close to M? or M'%. In summary, the
factor of N in the bounds (32) can be replaced by N-2. However this represents a saving of only

1 bit in the N = 4 case and even less than that for larger values of N. For this reason the overall

wordlengths in Table 4 should be used.

It is apparent that the wordlengths required are much more moderate than was predicted in Tables
1 and 2 even though the data quantization wordlengths have a similar range to those used there.
Nonetheless, an accumulator length limit of even 64 bits would place real restrictions on the sizes
of problems to be solved. A smaller limit would clearly be very restrictive without some scaling

of the right-hand side vector during the computation. Only the right-hand side would need scaling
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since the matrix elements are not subject to growth except as a result of rounding errors. This
suggests another possibility: different quantization for the data matrix and the desired response
to keep the dynamic range for the right-hand side smaller. Such a trade-off may be considered

later.

5. Error analysis
We must consider the effect of errors from a variety of sources:
quantization errors in the data matrix and the desired response,
the formation of the covariance matrix and cross-correlation vector, and

rounding errors in the divisions in the elimination and back substitution phases.

Conventional error analyses can be used for some parts of this but the fixed-point arithmetic with
extended accumulator that was discussed previously dpes not lend itself immediately to those
analyses which are liable to produce overly pessimistic results in this case.

The first-order effect of the propagation of the data errors can be modeled on conventional
analyses such as those of Wilkinson {14], [13] but the results which are included below for
completeness are inappropriate for our integer arithmetic if the errors are such that second order
effects are truly negligible.

Because of the “integerized” nature of the data matrix and desired response, the real and

imaginary parts of the quantization errors are each bounded by 1/2 so that the error in any

element of the data matrix is bounded by 1//2. In this section, we denote the computed
covariance matrix and cross-correlation vector by 4 and b respectively to distinguish these from

their theoretical counterparts. We shall also denote the computed solution for the weights by W.

First, we consider the effects of the quantization errors on the computed solution. Here and
throughout this section we shall only consider first-order effects. The elements of the data matrix
are quantized to g4-bit complex integers which (assuming correct rounding) have errors < 1/2 in
both their real and imaginary parts. Hence the errors in the data matrix are bounded by:

18x,] = 12 (39)

Elements of the (scaled) covariance matrix are formed from inner products of the snapshot
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- vectors. A product of two such numbers u, v say, computed in exact integer arithmetic has an

error bounded by

I‘S(UV)I = IU3V+ V3u+5u8v| < _J__”_l\_;__l_"l < zq,rl | (40)
2

neglecting the second-order term. It follows that the computed elements of the scaled covariance

matrix have errors bounded by

162, < Kx29 = M | @)
V225 | |

which is equivalent to the statement that (at least) the first gy bits of each element are correct.
This leads to a third natural possible scaling of the original problem in which the matrix and
right-hand side would be stored to this accuracy. This gives rise to a modified error and range

analysis which will be considered later.

From (41), it follows that
164, < NK2%! (42)
and, similaxly,

18b], = K29 43)
For the true (unscaled) covariance matrix, the rounding errors resulting from the division by K
is of similar magnitude to the already neglected second-order error term and so there are bounds
similar to those in (41) - (43) except that the factor K is not present.
To estimate the effect of these errors on the computed solution, we use a first-order analysis
which is a slight modification of the usual Wilkinson-style relative error analysis to this situation.
With no arithmetic errors during the solution process, the computed solution satisfies

(A+8A)W =b+8b = Aw+6b 44)
from which we obtain the following error “bound” which is dependent on the computed solution:

IW-wl, < A7, (184, W], + 18bl.) @5)
Using the first-order estimate:

Wi, = Iwl, = ]A7bl, < |47 Ibl, (46)

and using Compton’s eigenvalue analysis, we see from (10) that Amn = 1 sothat |4 1. = 1.

Substituting this in (46) and (45), we obtain the bounds
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léwl. = IWw-wi, < [84], W], + |8b], 4
< |64l Ibl. + 18b], @

which indicate that the error bound is of the same order of magnitude as the solution itself. Such

a bound is not useful.

Wilkinson [13] also includes a summary of the corresponding fixed-point analysis for the
situation where the correct binary exponent of all elements of the solution is known - and is
constant over the weight vector. Such an analysis is not immediately applicable in our situation
but its basic principles can be used here if we make the one additional assumption that the
magnitudes of the weights (both true and computed) are such that second order error effects can

be neglected. We shall make this assumption throughout the remainder of this section.

Since we are computing integer solutions using longer wordlengths than are strictly necessary this
is not much more than the assumption that all weights are nonzero which in turn is equivalent

only to saying that there is no redundancy in the antenna array.

From our earlier analysis, (41) and (43), we know that the maximum error in elements of the

(scaled) covariance matrix and cross-correlation vector is bounded by

MJ229%) = K29 = E (48)

say. There is a corresponding error bound for the unscaled case:
M [(j22%) = 2% = E! (49)
Wilkinson's [13] pp111-2 fixed point error analysis can be modified to our situation by regarding
the various integer quantities as fixed point fractions of some global bound. The wordlengths
chosen are then sufficient for exact accumulation of scalar products and for the use of this "long
accumulator” for division.
With this interpretation, it also follows that the assumption [13] p212 that all matrix elements
remain bounded by unity throughout the solution process is valid in this case. This follows from
the "no-growth” result summarized in (16). In turn this implies that results corresponding to those

of [13] pp 209-11 are valid for our system and arithmetic.
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-~ From (41), we have already observed that the leading gy bits of all matrix elements are correct.
Neglecting any second-order effects and recalling that, because of the greater accumulator lengths
discussed above, any inner products and divisions can be formed using a "long” accumulator then

there is maximum error in elements of the upper triangular factor and corresponding right-hand

side, regarded as fractions, of (N - 1) 279,

The dynamic range “analysis for back substitution in the last section éstablishes that the inner
products formed during this phase can be computed exactly. Compare Section 11 of [14] for the
situation where the order of magnitude of the components of the solution is known. The critical
feature of that analysis is that the magnitudes of the roundoff errors are then determined by the
working precision or wordlength. Although the corresponding order of magnitude is neither fixed
nor known here, the dynamic range established in the preceding sections implies knowledge of

the magnitude of roundoff errors.

Again interpreting all our integers as fixed-point fractions, it then follows that the back

substitution therefore results in a further error bounded by 2. Neglecting any second-order -

effects, it follows that the final computed solution has components with errors bounded by NE

or N 279, Such an error corresponds to a further loss in precision of at most log N bits in the
real and imaginary parts of the weights. Thus we require that gy be at least this much greater than
the data quantization g,, that is

g, = gy+logN (50)
from which using (30) - (35) it follows that

L,=2(g,+logN +1

4q,+5logN+52 (+log K) (51)

t\
[
v

L,=6qg,+7logN+4 (+2logK)

where the final parenthetic terms are included in the scaled case.

In every case in Table 3, this yields a value for L, > 1.5g, so that the wordlengths derived in

Table 4 are inadequate for this process. We use (50) and (51) to get the revised wordlengths
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Wordlengths gy, L, L, given by (50) and (51) with g,, taken from Table 3
(a) SNR, = 20 dB
K=2N K=aN Unscaled
N 4 8 16 4 8 16 4 8 16
9 8 10 12 8 10 12 8 10 12
L 40 50 60 4] 51 61 37 46 55
L, 60 75 90 62 77 92 54 67 80
(b) SNR; = 30 dB
K = 2N K = 4N Unscaled
N 4 8 16 4 8 16 4 8 16
gy 11 13 15 1 13 15 1 13 15
L 52 62 72 53 63 73 49 58 67
L, 78 93 108 80 95 110 72 85 98
(©) SNR; = 40 dB
K= 2N K = 4N Unscaled
N 4 8 16 4 8 16 4 8 16
9 15 17 19 15 17 19 15 17 19
L, 68 78 88 69 79 89 65 74 83
L, 102 117 132 104 119 134 96 109 122
(d  SNR, = 50 dB
K =2N K =aN Unscaled
N 4 8 16 4 8 16 4 8 16
9y 18 20 22 18 20 22 18 20 22
L 80 90 100 81 91 101 77 86 95
L, 120 135 150 122 137 152 114 127 140

We note that these wordlengths are such that even a 128-bit processor is inadequate for many

problems. This suggests that some scaling would be necessary in order to keep wordlengths to
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- a practical level.

One natural approach to this which should be pursued is to take advantage of the fact that only |
g, bits of the ‘initial matrix and right-hand side are correct and so store only these. This is
equivalent to a scaling of the linear system which halves the initial wordlengths from which the
growth takes place. Of course this does not simply mean that all subsequent wordlengths are

halved and both the dynamic range and error analysis needs to be reworked for this situation.

Conclusions

In this paper, we have derived equations to allow trade-offs between word size for the
adaptive weights, data quantization, dynamic range (word length), and accumulator word size,
for the conventional Gauss Elimination algorithm, using an integer processor. We have found that
a very large word length is required for a moderately sized adaptive beamforming problem. It
is obvious that for large problems, say greater than 16 antenna elements, that scaling is required

to keep the word size down. This scaling will degrade the accuracy of the adaptive weights.

This prbblem must be examined further to validate the practicality of using an integer (e.g. RNS)
‘processor. In a subsequent paper, we will study the trade-offs for the divisionless Gauss
Elimination algorithm of Kirsch and Turner or QR-Decomposition, using scaling instead of

division in the conventional implementation.
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